
Keefer Rourke 19 May 2015
Mr. Fryer-Davis ICS4UI

Text Compression and Decompression – Design

Running the programme
When the programme is run by the user, the text compression utility will expect some command line
arguments with it. The way I expect this to work will be as follows:

To create a compressed file:
huffcompress -c <input filename> <output filename>

To extract the original file from a bin file created by huffcompress:
huffcompress -x <input filename> <output filename>

For ease of use, the final argument for the output filename could be optional, defaulting to an output
file called <input filename>.bin, or some other logical extension in place of .bin .

If some arguments are missing, a help message should be displayed that explains how to use the
programme, and then the programme should terminate so the user can start again. This is the standard
behaviour for most familiar *NIX command line utilities, and so is the way it should be for consistency
with the rest of the operating system.

Compressing files
If the user wants to compress a text file, the specified input file should be read, and checked for validity
as a plain-text file. If the file can be opened, it should be read into a buffer, or a temporary string, so
that it can be statistically analysed. A small database of the frequencies of occurrence of each character
will then be created and used to build the Huffman binary tree.

The Huffman tree is created by first creating a forest of trees with a single node each. The nodes will
have the structure:

struct node
{
 int freq; //the frequency that the character appears in the text
 char c; //the character itself
 bool isLeaf; //1 for leaf, 0 for internal node
 node * left; //pointers to children; NULL for leaves
 node * right;
};

and contain the frequency of the character in the node, the character itself, whether or not it's a leaf, and
pointers to it's left and right nodes. When the forest is initially created, the left and right nodes are
NULL, and there is a tree for each unique character in the file that was opened.

This forest will then be made smaller, as the trees with the lowest frequency values at the root node
each are combined two at time. Eventually, after O(n-1) operations, this will result in a single Huffman
tree, from which variable length codes for each character can be created.

The Huffman tree will effectively have two types of nodes, a leaf and an internal node. This will be
denoted by the isLeaf boolean property of the node structure. The variable length prefix codes for each
character will be generated by traversing the tree recursively searching for each letter until a leaf node
is encountered. For every turn left, a zero is appended to the variable length prefix code, and for every

Keefer Rourke 19 May 2015
Mr. Fryer-Davis ICS4UI

right turn, a one is appended to the prefix code.

Once the codes have been generated, they can be strung together in order of occurrence in the original
file, split into 8-bit binary numbers, and saved to the disk along with a flattened representation of the
Huffman tree in the compressed binary file.

The output file
The binary file that is created will be entirely composed of 1's and 0's, and thus, is more difficult to deal
with than plain-text. It's structure must be organised, consistent, and easily read without any confusion.

The file will contain:
• a binary representation of the Huffman tree that was built to encode the text
• the encoded text

Representing the Huffman tree, such that it can be built exactly as it was originally, though with less
data is fairly simple matter. The frequency of each character doesn't much matter, and so does not be
saved to the file. The only data that matters is the number and sequence of the nodes, which node
represents which character, and whether or not the node is a leaf.

The node can be represented as an internal or leaf node by writing a 0 or 1 to the file respectively. If a 0
is encountered when parsing the file, then it represents an internal node with two children. If a 1 is
encountered when parsing the file, then it represents a leaf node. Immediately following the 1, the
binary version of the ASCII value for the character that is at that node is written. Once two leaf nodes
have been found, jumping back to their parent node, the next child is filled out with what follows.

Using a simple example, if one were to encode the string 'aabbbc', the tree would look like:

Huffman tree with frequencies: Encoded tree as in the binary
file:

Reconstructed Huffman tree without
frequencies:

 6
 / \
 3 b
 / \
 a c

001a1c1b

 0
 / \
 0 b
 / \
 a c

Along with the encoded tree, the encoded text needs to be stored using their prefix codes to represent
the letters. The prefix codes should be strung together and converted to a binary number, which is then
written to the file along with the Huffman tree.

Using the above example, the prefix codes are:
a 000

b 1

c 001

So the encoded data is: 0000 0001 1100 1 (13 bits)
And the binary file contains: 001a1c1b 0000000111001 (total 5 bytes + 2 bits)

Keefer Rourke 19 May 2015
Mr. Fryer-Davis ICS4UI

Decompressing files
The first chunk of the compressed file will be the representation of the Huffman tree, so it must be read
and a tree must be built from it. When the first 0 is encountered, the root node of the tree will be
created. For every zero following, a left child will be created for the previous node until a 1 is
encountered, indicating that the next node is a leaf. The leaves will be filled out left to right, filling
empty children until another zero is encountered where the process repeats.

Using the example from before, the tree 001a1c1b can be decoded as:
1. zero is encountered, make an empty root node
 0
 / \

2. zero is encountered, make an empty left child to the root node
 0
 / \
 0
 / \

3. one is encountered, make a left child with value of 'a'
 0
 / \
 0
 / \
 a

4. one is encountered, make a right child with value of 'c'
 0
 / \
 0
 / \
 a c

5. one is encountered, make a right child with a value of 'b' for the next node up without a right child
(in this case, root)
 0
 / \
 0 b
 / \
 a c

This tree resembles the original one that was generated upon compression, and can be used to figure
out what the prefix codes in the data translate to as letters. Reading the encoded data, it is used as
instructions for traversing the tree. Every time a leaf node is encountered, the corresponding character
should be written to a new plain-text file, and the tree traversal should start over again at the root node.

After the end of the binary file is reached, this process is terminated, and all files are closed. The new
plain-text file should be exact same as the original one.

