
Keefer Rourke 19 May 2015
Mr. Fryer-Davis ICS4UI

Text Compression and Decompression – Requirements

Text compression is a technique used to save disk space by representing strings of text in a binary file,
which can be significantly smaller than the original plain text file. Huffman coding is a technique that
uses a binary tree to store all the letters in a text file or string, along with their frequencies.

Reading from the top or root of the tree, each letter is associated with a unique variable length prefix
code, where going left on the tree generates a zero, and going right on a tree generates a one. The letters
are sorted by frequency, where the most frequent letter or character, has the smallest value in the tree.

Once the tree is constructed, it can be traced through to generate a binary number string for each
character. These strings are then combined in order (as occurring in the original string), split into 8-bit
chunks, and written to the disk as numbers. The tree is also written to the disk.

As far as decompression goes, the binary file will contain a representation of the original tree, and the
numbers which represent the encoded text. The tree will need to be reconstructed perfectly, and the
encoded text changed back into a binary string of ones and zeroes. The string will then be read digit by
digit, where a zero means that the program should go left in the tree, and a one means that the program
should go right in the tree. Once a leaf node has been found, the letter it contains will be added to
another string of characters, until the binary digit string has been completely decoded. The new string
will then be written to a new plain-text file.

This project will consist of five major parts:
• parsing the string and building the Huffman tree
• reading the Huffman tree to create the encoded string
• writing both the Huffman tree and encoded string to the disk
• reading the encoded file, to rebuild the tree
• decoding the string using the rebuilt tree

Keefer Rourke 19 May 2015
Mr. Fryer-Davis ICS4UI

Approximate Schedule:

May 19 – May 22 Finish planning • Finish planning and design
documentation

• Look at adding command line arguments
for the program (for instance, -c
<filename> to compress, and -x
<filename> to decompress, similar to
GNU tar)

May 23 – May 29 Implement string/file
parsing

• Implement a Huffman tree library
• Parse the strings from a file, and build a

binary tree from the frequency of each
character

May 30 – June 5 Generate prefix codes • Read binary tree and generate variable
length codes for each character, save to a
string

• Break up string into 8-bit binary
numbers

June 6 – June 9 Write/read binary files • Write Huffman tree and encoded string
data to a file

• Read encoded string data and Huffman
tree from file

June 10 – June 17 Decode text • Rebuild Huffman tree from binary file
• Read encoded binary string, and get

plain-text letters from the tree
• Output decoded text to new file

