
Keefer Rourke 15 June 2015
Mr. Fryer-Davis ICS4UI

Text Compression and Decompression – Testing

While this project was not completed in its entirety, a significant portion of the project has been
completed and is functional. The programme, when executed in “compression” mode, successfully
reads in a text file, builds a frequency table and Huffman tree, generates variable length codes, and
creates a binary file containing the generated data. It however cannot decompress the data when
executed in “extraction” mode.

Note that this programme was developed and tested exclusively on GNU/Linux, using the C++
standard library.

Compression mode
Example programme usage in compression mode:

huffpuff -c [inputfile] (outputfile)

As above, my programme (dubbed 'huffpuff') will read the contents of the text 'inputfile' and write the
encoded contents to the binary 'outputfile'. During development, the integers that were being written to
the file were printed to the console, so they could be verified as the contents of the binary file using a
hex editor/viewer such as `GHex`.

This was tested thoroughly using several files of different sizes ranging from 0 B in size to 72 kB in
size. These files have been included in the project archive under the “test-files” directory.

In test cases where the input file is 0B, the program will print an error and quit, as it cannot operate on
an empty file.

Example test cases:

On empty file:

./huffpuff -c test-files/empty.txt test-files/empty.bin
Error: test-files/empty.txt is an empty file.

On non-existent file:

./huffpuff -c nonexistingfile.txt
Error: nonexistingfile.txt is an empty file.

On 1 byte file:

./huffpuff -c test-files/nl.txt test-files/nl.bin

: 0 <-- this is the newline character
: 1 <-- this is the EOF character
Successfully opened test-files/nl.bin
bitsize of header: 19
wrote header to file
bitsize of encoded text: 2
wrote encoded text stream to file

Keefer Rourke 15 June 2015
Mr. Fryer-Davis ICS4UI

In this test case, and others where the input file size is very small, the output file is much larger than the
input file because the Huffman tree must also be stored in the output file. The import thing here though
is that the file contents are compressed from 1 byte to 2 bits.

Note that this file, though when opened appears empty, contains one empty line, which takes up one
byte. It was created with`touch test-files/nl.txt; echo “” > test-files/nl.txt` on Ubuntu
15.04.

On the GPLv3 (35.1 kB):

./huffpuff -c LICENSE.txt test-files/license.bin

[variable length codes here]
Successfully opened test-files/license.bin
bitsize of header: 769
wrote header to file
bitsize of encoded text: 162029
wrote encoded text stream to file

In this test case the input file (35.1 kB) is compressed to the file 'out.bin' with a size of 20.4 kB,
approximately 42% savings.

On dummy text (71.9 kB):

./huffpuff -c test-files/lorem_ipsum.txt test-files/lorem_ipsum.bin

[variable length codes here]
Successfully opened test-files/lorem-ipsum.bin
bitsize of header: 419
wrote header to file
bitsize of encoded text: 307806
wrote encoded text stream to file

In this test case the input file (71.9 kB) is compressed to 38.5 kB, approximately 46% savings. This
file was generated from <http://lipsum.com>.

On existing binary file (nl.bin from above):

./huffpuff -c test-files/nl.bin test-files/out.bin

[variable length codes here]
Successfully opened test-files/out.bin
bitsize of header: 69
wrote header to file
bitsize of encoded text: 34
wrote encoded text stream to file

In this test case, the input file is an existing binary file. `huffpuff` can't distinguish if the file has already
been compressed, and instead reads in the binary (interpreting it as ASCII) and compressed it again.
Presumably this could then be decompressed twice to get back to the original file, or safeguards could
be put in place (only accepting certain mime-types for instance) to forbid this behaviour.

http://lipsum.com/

Keefer Rourke 15 June 2015
Mr. Fryer-Davis ICS4UI

Extraction mode
Example program usage in compression mode:

huffpuff -x [inputfile] (outputfile)

As above, when the program is called in this fashion, it should read the contents of the binary input file,
decode them, and write the decoded text stream to a new plain-text file. However, since this is not yet
implemented, when the program is called with these parameters, it does nothing. The outline of what
should happen is described in the source file 'puff.hpp'.

If this function were implemented it would be tested by running the program first in the compression
mode to produce a compressed binary file. The program would be then be run as

./huffpuff -x input.bin output.txt

making sure to specify a new unique output file name, to produce what should be an exact copy of the
original file.

The correctness of this decompression can be easily compared either by manual inspection for small
files, or through the use of a standard utility such as `diff` from GNU diffutils.
If the command `diff original-file.txt extracted-file.txt` returns nothing, then the files
are the same, and the extraction method of huffpuff works properly.

A full overview of this testing process is as below:
./huffpuff -c input.txt out.bin
./huffpuff -x out.bin extracted_text.txt
diff input.txt extracted_text.txt

The test would be considered a pass if diff returned nothing to the console, and a fail if it returned
something to the console.

Improper usage
If the programme is used improperly, for instance if bad arguments are provided, the programme is
directed to the print the usage of the programme to the console and then terminate. First the programme
checks for number of arguments, if there are too few or too many, it quits. If the number of arguments
passes, then the validity of the arguments is checked.

Examples of improper usage and respective error messages:
./huffpuff <-- no arguments provided

Error. Invalid number of arguments.
./huffpuff -c <-- too few arguments provided

Error. Invalid number of arguments.
./huffpuff -x input output thirdfile <-- too many arguments provided

Error. Invalid number of arguments.
./huffpuff -s input output <-- invalid argument provided [-s]

Error. Bad arguments.

Usage message printed after any of the above errors is as follows on the next page:

Keefer Rourke 15 June 2015
Mr. Fryer-Davis ICS4UI

NAME
 huffpuff - a Huffman coding implementation

SYNOPSIS
 huffpuff [-c] [--compress] [-x] [--extract] [--decompress]
 [--inflate] file ...

DESCRIPTION
 Compress plain-text files, and decompress Huffman binary files
 created by this programme.

OPTIONS
 Mandatory arguments are as follows, plus the input file name.

 -c, --compress
 compress a plain-text file to a smaller binary file

 -x, --extract, --decompress, --inflate
 decompress a binary file back to plain-text

 Optionally an output file name can be specified (see usage)

USAGE EXAMPLES
 huffpuff -c inputfile.txt
 huffpuff -x inputfile.bin
 huffpuff --compress inputfile.txt outputfile.bin
 huffpuff --inflate inputfile.bin outputfile.txt

