
(The 2020 Edition)

Rethinking
Firefox I/O

20.08.25 Firefox Performance Engineering

Keefer Rourke
[:krourke]



Firefox is huge and 
complicated.

A modern browser is a heck of a lot like an operation system.



Let’s change the way 
we do File I/O.



File I/O in 
Firefox:
A history

1996. NetScape Portable Runtime (C)
Cross-platform I/O library written in C. Provides abstractions for 
differences in platform calls and structures on Windows and Unixes

2002. XPCOM nsIFile (C++/XPIDL)
Built on top of NSPR, provides object-oriented interfaces for blocking 
file I/O. Exposed to privileged JavaScript via XPIDL.

2010. OS.File (JavaScript/C++)
What we use now. Implemented mostly using JavaScript service 
workers. Provides asynchronous/off-main-thread file I/O functionality.

2020. IOUtils (C++/Web IDL)
What we’ll use going forward. Implemented entirely in C, and 
exposed to Firefox chrome code via Web IDL.



Going forward

Need to do anything with files?

We’re using IOUtils from now on!



How did we get here?



7



8

~1500
Lines of C

~7250
Lines of JavaScript

16
Files (and 2 implementations)

Some important numbers Excluding OS.Path* and tests)

OS.File’s Implementation

Firefox Confidential



9

Before I started to port OS.File to C, I did a 
pretty thorough analysis of how it’s used.

The demand for a new API largely consisted 
of a namespace for static methods.

OS.File common usage
read

writeAtomic

stat

move

copy

remove

touch

...



10

● Dead easy to use!
● Safe, correct, and consistent across platforms!
● No surprises!
● Support idiomatic JavaScript
● Use a simple implementation built around native promises

Goals for the API



11

Why Yet Another File API?

● The OS.File API is just fine, but the JS implementation has problems
● An opportunity to prune the unused parts of the OS.File interface
● A C implementation means

○ Less code
○ More memory savings 
○ Less disk I/O
○ A faster Firefox :)



IOUtils

● Provides a non-blocking API to 
privileged (ChromeOnly) JavaScript

● Uses background thread I/O
● Works on all supported platforms
● Has only one implementation

~1000
Lines of C

0
Lines of JavaScript

3
Files



Performance
Do less work, and spend less time waiting around.



Doing 
extra I/O 
sucks

Most file I/O in the Firefox front-end is done via 
OS.File

● OS.File is implemented in JS

● JS modules are files on disk

So to do any I/O operation with OS.File

● A C process has to read the JS module

● SpiderMonkey has to interpret it

● It has to be kept in memory

● All this has to happen for every process



Project Fission 
will create a lot 
more processes

● Reducing work during 
process creation is super 
important

● IOUtils is native code that 
comes for free with every 
process! 😁



16

Waiting for I/O sucks
● When a thread requests disk I/O, the thread is stuck waiting for results
● Most mobile and desktop apps manage the GUI on the main-thread

○ Including Firefox :)
● I/O bound operations can make apps feel super slow

⏱ = suspended/blocked thread



17



What’s next?



19

● Consider a blocking version of the API for Rust consumers (bug)

● Consider adding streaming support

○ This could use the W3C streams API

● Stop using OS.File!

Future work

https://bugzilla.mozilla.org/show_bug.cgi?id=1231711#c19
https://www.w3.org/TR/streams-api/


20

Barret [:barret]
Mentor

Gijs [:Gijs]
Reviewer

Olli [:smaug]
Reviewer

Couldn’t have got this far without you :)

Kudos to these folks

Kim [:kmoir]
Manager



21

Thanks for helping me with random bugs, giving me great advice, and otherwise making this 
summer great!

Some more shout outs

Firefox Confidential

Emma [:emalysz] Nika [:nika] Nathan [:froydnj]

The University Team

Botond [:botond]

Anny [:annygakh]

Benjamin [:b4hand]

The Perf Team Summer 2020 Interns

And a big round of applause to these great teams of people :)

David [:Yoric]



Presentation Name — Section Title

Questions?


